When I got the Leica M Type 240 the idea of doing a video with the Leica 50mm Noctilux-M ASPH f/0.95 was straight forward. I already did it the first day (as you can see on the previous page 35). Wasn't this what everybody wanted to do?
Little did I know about how much I didn't know about video.
I am a still photographer (minimalistic; preferring the minimum of equipment). I didn't upgrade from Leica M9 to the Leica M Type 240 to do video, nor did I expect many of the traditional Leica M users to do either. And I was right in that assumption, according to the responses I got from the usual Leica M still photographers.
Johnnie Behiri working with the Leica M Type 240 on a Mini skater with Leica 50mm Summicron-R
f/2.0.
Unfortuntely this may have been the only point where I was right in this matter What I hadn't taken into account was some people are already doing video with other tools and may be looking at Leica M Type 240 as a possible new tool. They did not see the beauty of narrow focus and beautiful creamy bokeh of a f/0.95 lens. Instead they only noticed what they perceived to be a less than optimum image quality, sharpness and some unwanted effects that I will describe later.
To make a long story short and to introduce somebody who knows what videographers want, Austrian videographer Johnnie Behiri from cinema5d.com flew to Denmark.
We set up a 3-minute documentary about Danish dress designer Maibritt Kokholm. This is the result:
Full Leica M240 Pack:
Video Masterclass
+
Street Photography Masterclass
All about the Leica M240 video instruction masterclass (17 videos)
+ Street photography video masterclass
filmed in New York (11 videos).
+ 8 Bonus videos
+ Styles for Capture One for Leica M240
+ Lightroom Presets. for Leica M240
Normal price $1,192.00
Save 60%
Only $476.00
USE CODE: "ILOVEM240"
Order now. Instant delivery.
100% satisfaction or money back.
Item #1844-1848-0823
Leica M240
Video Masterclass
Two hours of video class
with Thorsten von Overgaard
+
20-page checklist for learning
every corner of the Leica M240.
Order now. Instant delivery.
100% satisfaction or money back.
Item #1844-1017
Does the Leica M Type 240 perform satisfactory for video?
Yes and no.
Which I shall try to clarify in this article.
I should also mention that I had ongoing discussions and file exchange with Andrew Reid who runs the eoshd.com website and who, after having seen the original files from the Leica M Type 240, concluded: "I'd rate the Leica M in the same league as the 5D Mark III in terms of the video quality. It's a pretty good effort."
A conclusion he couldn't draw after having seen only the Vimeo video which we had edited in iMovie (he recommended downloading a trial of Adobe Premier). Andrew Reid also helped me with a lot of good advice in short to-the-point mails, and for this I am thankful, and shall try to share his insight and advice in this article.
Johnnie Behiri working with the Leica M Type 240 with Leica 90mm APO-Summicron-M
ASPH f/2.0 and Leitz M-to-M macro adapter "Oufro"
Videographer versus minimalistic artistic minded still photographer
Johnnie Behiri has done hundreds of similar short videos as the one we planned for BBC and National Geographic. Doing a video with a videographer behind the camera allowed us to test the Leica M Type 240 under the conditions that videographers normally work.
It also allowed me to study how a videographer sees the world and his equipment. What for me is a choice of an artistic tool and simplicity equipped with the best lenses money can buy, is for a working videographer a choice of value for the money and getting the shots.
I could have chosen to influence the light setting, the white balance, the use of lenses. But that was not the idea. The idea was to let a videographer use my Leica M Type 240 and lenses and form his own opinion and review as it as can be seen on cinema5d.com.
What is different for still and video (the short version)
If you want to use the Leica M Type 240 for video there are a few things to take into consideration. I am by no means an expert, whilst wiser now than a week ago. And I shall try to share some of my limited wisdom on the subject.
Claudia Würtl, assistant of Johnnie Behiri and the Leica M Type 240
Video is recorded at 1/50 sec exposures
The first inkling that video is a different world than still photography will start to light up when we realize that video is shot at 1/50 second. You will realize this changes the whole thinking and use of light.
Where the word photography comes from 'painting with light', the word 'video' comes from 'to see' or 'to see and hear'.
The Leica M Type 240 is set up for still photography which is why the shutter speed dial on top of the camera has a 1/30, 1/45 and 1/60 setting. However, the one to use is 1/45 and that will tell you in the preview that the shutter speed will be 1/45 sec. However, when you start filming, the shutter speed will be 1/50 and also on the preview screen the shutter speed will rightly be shown as 1/50. As soon as you know it is not a problem, but untill then it is a bit confusing.
Johnnie Behiri working with the Leica M Type 240 on a Mini skater with Leica 90mm APO-Summicron-M
ASPH f/2.0 and Leitz M-to-M macro adapter "Oufro" to capture the hands of Maibritt Kokholm.
A few new naughty video words: Rolling Shutter and Banding
A band called Rolling Stones performing Like a Rolling Stone. Interestingly enough with artificial Rolling Shutter as a video effect.
When I posted my first video from the Leica M Type 240 on the previous page, I wanted to show the dreamy effect the Leica 50mm Noctilux-M f/0.95 produces.
What interested videographers and what video blog reviewers noticed was not what the Leica 50mm Noctilux-M ASPH f/0.95 can do wide open at f/0.95. What they noticed was the apparant lack of sharpness and the rolling shutter caused mainly by the use of higher shutter speeds than 1/50.
Each frame in video is recorded not from a snapshot of a single point in time, but rather by scanning across the frame either vertically or horizontally. In other words, not all parts of the image are recorded at exactly the same time.
Hence when you pan the camera from left to right for example, you can visually see on the display (and in the video) that vertical lines don't stay vertical but tilt more or less. The Leica M Type 240 has a serious amount of rolling shutter making it less suitable for panning. And the same goes if the camera is standing on a tripod and a car drives by; that car too will result in rolling shutter.
This type of Rolling Shutter known as "Wobble" or "Skew" is less noticeable. Words we would like to be without but seemingly will have to learn to use when doing video on the Leica M Type 240.
The Leica M Type 240 can shoot at 24fps without flickering as long as the shutter speed is kept on 1/50.
CCD sensors as the Leica M9 used, are alternatives to CMOS sensors but cannot be used for live view. CCDs use what is referred to as global shutters which take a snapshot representing a single point of time and do not suffer from these motion artifacts.
One of the reasons CCDs look so filmlike is that the noise pattern is completely randomized. On CMOS it is uniform and you can always notice the fixed pattern of noise imprinted on the image. A CCD sensor has grain like film and it moves in the same way as film grain.
Buy the new eBook
"The Freedom of Photographic Expression"
by Thorsten Overgaard
"The Freedom of
Photographic Expression" eBook for computer, Kindle and iPad
October 2016 (268 pages)
In this easy to read and apply eBook,
Thorsten Overgaard takes beginners and experienced photographers through the basics of controlling the light and the camera.
This book covers the technical side of photography from beginners level to semi-pro, features a number of photographs by Thorsten Overgaard and chapters on his philosophy on photography.
Only $148
Buy Now
Instant Delivery
"I've bought the new book - made a start reading it - it is really interesting.
I know it’s basic at the beginning but it isn't written in a patronizing way. I have been taking photographs for many years and have been lucky enough to be paid to take them for the last seven years; but it's always good to be taken back to the start"
P. S. (UK)
""Really enjoy your writing and teaching"
D. K. (USA)
"I love your insights on photography."
D.B. (USA)
★
★
★
★
★
★
Understanding video image quality
The Leica M Type 240 is a 24MP digital rangefinder equipped with a special designed CMOS sensor without AA filter and with Leica designed microlenses. Plus the Leica Maestro processor behind that was developed for the Leica S medium format cameras.
The still output is a 24MP raw file. The video output from the same camera is 24, 25 or 30 frames per second in compressed JPG, a much smaller size than the 24MP raw file.
Digital video from HDSLR cameras (as the Leica M Type 240 is considered) involve downscaling a very high resolution sensor to 1920x1080 JPGs which involves heavy compression of each frame to for manageable video file sizes.
How this is done largely determines the final quality - or how close the video frames look to a raw still frame from the sensor. The ideal situation would be to get a direct tap on the sensor and raw files at 24fps but obviously that requires a lot of power and there's issues around heat too.
That was the bad news. The good news is that there is room for improvement in video cameras. No doubt that one day teenagers will be shooting 4K video with their iPatch (the Captain Hook digital eye patch I have patented that does all that you need in life).
High end cinema cameras and Super 35mm motion picture film is closer in look to raw, or film. That's not possible with a HDSLR with the current technology (the Aptina sensor in the Nikon 1 can shoot 4K (10MP) raw video at 30 fps, but then only for 1 second due to buffer size limits).
Here is the current state of video quality versus 24MP still camera quality:
100% crop from the video, 200 ISO. Film Mode: OFF
Similar crop from the DNG still, 200 ISO
Full-size video image unaltered. Film Mode: OFF
Full-size still camera DNG image unaltered
In terms of quality, each frame of a DSLR video clip should aspire to be as close to a JPEG in terms of quality as possible. The digital processes required to get video off a photographic sensor can cripple the image if the compromises are too heavy.
When a JPG is compressed one can experience a degree of banding (a tone that goes in steps instead of subtle shading), unrealistic colour, lack of fine noise grain, moire, aliasing and mushy details.
I am not a videographer but a still photographer. What I hear is that the quality of the Leica M Type 240 video files are (as) good (as the Canon 5D III) and probably could be better if the footage was left more flat (unaltered by camera setting).
But I also hear that it is not near the quality of the Canon 5D III. So I will let that be determined by others:
Sample of Leica Type 240 video for download
If you would like to see some of the original footage from the camera, feel free to download these and play around with them for your private use:
Leica M Type 240 with Leica 50mm Noctilux-M ASPH f/0.95
Frames per second
Video is 25 fps or 24 fps; for normal always 25 fps sLight m. For slow motion you would use 30fps or more.
You should shoot 25 fps in Europe. If you shoot 24 fps outside of the US and Japan, street lights and some indoor lights might flicker if you don't stay at 1/50.
Once you push to 1/100 or higher, motion will have a staccato digital feel.
The Leica M Type 240 has to be set at 1/45 second on the shutter dial on top of the camera. In the preview mode when you focus the display will say 1/45, but when you actually start recording, the shutter will be 1/50.
Johnnie Behiri working with the Leica M Type 240 on a Mini skater with Leica 50mm Summicron-R
f/2.0. Litepanels Sola ENG kit for additional light from the corner.
Light metering in video
The Leica M Type 240 offers several built-in light metering methods (spot meter, classic center and intelligent multi-field metering). Unfortunately the preview on the display and/or in the EVF2 viewfinder shows only a bright image to focus by, and not untill you press the shutter release half down will you get the actual preview of how the exposure will look.
For a videographer, having to use one finger for preview whilst trying to adjust the aperture or ISO to get it right is not optimum. And to make it furhter complicated, when changing the ISO no preview is available in the viewfinder of how the change of ISO affects the exposure.
Some firmware optimizations could be done: There could be a live preview all the time of the exposure, and when going into the ISO setting menu, the image preview should stay on the screen so the videographer can find the right ISO.
Use of light meters for precise and reliable exposure
Another resource is using an external light meter. I do that when I do portraits and similar photographs where I want to guess less and have the certainty that the exposure will be right:
Light meters such as Sekonic L-758DR and the Sekonic L-358 are sold as still light meters but are also suited for external light metering when doing video with the Leica M Type 240.
If buying a new light meter I would recommend getting the CINE editions, such as the Sekonic L-758Cine. But any lightmeter that has a fps (or fs, frames per second) setting can do the job.
You have to set the lightmeter so you get the f/s (frames per second) in the window, and then set that to either 25 fps or 24 fps, depending on where you are working (24 fps in the US, 25 fps in most places outside US).
You then set the ISO to for example 200 (the Leica M Type 240 goes up to 1600 ISO in video).
What is not shown on the light meter is that video is shot at 1/50 second. So as a still photographer you will miss the infomration about shutter speed, as well as the ability to change it as a parameter for light control.
Then you measure the light and that gives you the f-stop. Here is a comparison of settings for video and still under the same light conditions:
Sekonic L-758DR set to 25 fps for video:
(You set the fps and ISO and the light meter tells you the f-stop)
Sekonic L-758DR set to f/1.0 for stills: (You set the aperture and ISO and the lightmeter tells you the shutter speed)
=
VIDEO 25 fps:
ISO:
f-stop:
STILLS exp:
ISO:
f-stop:
25 fps
200 ISO
f/1.4
=
1/60 sec
200 ISO
f/1.4
25 fps
200 ISO
f/4.0
=
1/750 sec
200 ISO
f/1.0
25 fps
200 ISO
f/11
=
1/6000 sec
200 ISO
f/1.0
As a still photographer this may take a little training to get used to. Because the fps is locked and the ISO determines the sensitivity. Hence the lightmeter tells you how much light to exclude by adjusting the F-stop. Or you may change the ISO. But the shutter speed you can't change.
The only other way to exclude light would be with ND-filters.
ND-filters in video (video needs much less light than stills)
Wide open lenses are not really used a lot in video due to focusing issues, but also video require less light.
When you go outdoors you often need ND-filters to reduce the light. ND is Neutral Density and basically sunglasses for the lens. It is a grey filter that does not change the look, the colors, the contrast or anything. It just reduces the light.
For video a gradual ND filter would make sense. These are also very usable for still photography though you normally use 3-stop ND filters (also known as 8X ND-filters).
Leica M Type 240 with Leica Vario-Elmarit-R f/4.0 zoom lens. A fairly inexpensive Leica lens that has been sold as a kit lens with the Leica R8 and Leica R9 and there is many available second-hand. Needs a Leica R-to-M adapter to fit onto the Leica M Type 240.
White Balancing in video (WB)
The white balancing for video in the Leica M Type 240 follows the manual WB set in the (still) camera. I do manual white balance with a WhiBal greycard, unless working outdoor where I will use Auto for general photography, or 3200 Kelvin for general shooting in artificial light indoor or in the evenings.
ISO settings
I haven't tested ISO settings in detail. The base ISO of the sensor is 200 ISO so I would stay on that, but most videographers will want their f/4.0, hence 800 ISO or similar indoor. That is what we used in the above video, 800 ISO indoor and 200 ISO outdoor.
The EVF2 is a really good viewfinder. When doing video the traditional Leica viewfinder is not used. The traditional viewfinder it the one built into the camera body where you focus by making two images match (a very precise device involving very expensive prisms and precise engeneered mechanical alignment).
There is a focusing aid button on front of the camera that, when pressed, activates a zoom funcion to aid focusing in the EVF2 or on the display on the back of the camera.
The zoom ratio can be changed with the thumb wheel, 10X being the maximum.
The camera can also be set to automatically zoom in when the focus ring on the lens is moved, which in my opinion is preferable.
Unfortunately the zoom function for focusing is not available during filming, meaning that the videographer has to rely on his or her good eye sight to adjust focus on the preview screen or in the viewfinder during filming.
The area where the zoomed focus is, is always in the center of the frame. It cannot be moved which is not optimum for video where the camera is often locked to a frame on a tripod. Could be a possible firmware update for the future.
Speaking of the rather good EVF, which is also helpful in still photography for focusing and many other reasons, the menu is always displayed on the preview screen on the back of the camera and never in the EVF. It's confusing to begin with, but again a possible firmware upgrade could make it possible to see the menu in the EVF (as it could be done in the Leica Digilux 2). Videographers will often use only the EVF, especially if the camera is placed so that the EVF is in an upright position (due to angle of the camera or because the camera is placed close to a wall).
Many videographers have gotten accustomed to having an external screen attached to their camera for exposure, framing and focusing reasons. That the screen is correct in terms of brightness is important. One should take time to adjust the EVF of the Leica M Type 240 as the image preview is not available in the EVF while you adjust the brightness on the menu. So you have to go back and forth untill you find the right brightness. Thankfully that should only be done once.
Focusing with 10x enlargment in the center of the screen. This feature is on the preview screen as well as in the EVF2 viewfinder. But not while filming why you have to focus before you start filming. When the filming starts, all you have is the preview screen with a normal screen view (or EVF2 if the space is not taken up by the microphone as it is on this photo).
It's a little ironic that videographers will never look through the acoustic viewfinder. It is one of the virtues of the Leica M rangefinder camera: This clear, bright and fantastic precise rangefinder is also a considerable part of the price for the camera. It is quite a piece of engeneering and some quality glass that goes into the rangefinder mechanism. I would say it is likely that Leica will offer a future version of the Leica M with just an EVF as videographers will want just that. Some of the still photographers will prefer an EVF inside the camera and no device on top of the camera (though a majority of hard-core Leica M rangefinder fans will prefer the classic acoustic viewfinder).
The EVF2 is really nice to use, but if you wear glasses you may want to have a cloth nearby to clean them.
Sound
On the previous page there is a few details about the sound. In practical terms it is very good that the sound level can be seen on the screen ... but not so good that the Leica M Type 240 does not offer a headphone jack at all. For the video above we added a wireless microphone connected via the microphone adapter in the hot shoe. Some wireless microphones offer a jack for headphones, so there you are. Maybe listen in on that device.
The microphone setting also has a "Concert" setting but it remains to be defined in the manual what that setting does. For concerts, yes, but how?
The sound level can be seen during recording when you press INFO, and can be adjusted as well. There is no sound exit for headphones.
Microphone - The Leica M has a built-in mono microphone under the top plate (under the four small holes), and you can also add a stereo microphone in the flash shoe.
Battery
The battery of the Leica M Type 240 is one of the really strong points, which is good for video.
For still photography I would set the camera to Auto Power Off to "two minutes".
For video I would set Auto Power Off to "Off" so as to make sure that the camera doesn't turn off during setting up.
All in all you want a video camera to be on all the time, and the Leica M Type 240 handles that task really well. For the recording of the video at the top of this page we were down to 20% battery when the day was over. That was 20GB of recording and the camera on for about 3-4 hours, including shooting outside in cold weather.
To change the battery one has to unmount the camera from the tripod as the tripod is attached to the camera itself through the bottom plate. But to change battery and/or SD-card, the bottom plate has to be taken off. Not a big problem as one would usually use a 32GB SanDisk memory card 90MB/Sec (somewhat 2-4 hours of video) and the battery seems to last for a very long time.
Editing and post production
A video editing tool allows you to cut and paste video clips, change, remove or add sound, add subtitles and other text ... and many other things that will make it a final video.
iMovie is nice but not really considered good enough for editing of HD footage as this. Apple Final Cut Pro was quite good till Version X that made many professionals leave that software. The advice I have gotten for solving the issue of producing simple video editing without losing the quality of the Leica M Type 240 video files, is to download a 30 day trial version of Adobe Premiere Pro CS6 (or if you are signed up for the Adobe Creative Cloud as I am, you can use it as part of the overall Adobe software subscription).
When loading off the video files from the camera I prefer to copy directly to a folder. As with my images, each folder has a unique event number so that I have a chronological archive (that is not sorted alphabetically after whatever default name I would call the folder):
I have used this event-number system to oganize photographs for years, and with video I have added a "-1-VIDEO" to the event number so that video and stills (and all other files related to a project) are at the same place - chronologically - on the drive, yet distinguished.
Directly to the drive, not via a software
Copying directly to a folder is faster but also ensures that you are organizing where your video files are, not a software.
Editing and exporting from Adobe Premiere
From the folder you simply drag and drop the Leica video clips into the Project window of Adobe Premiere Pro CS6.
Then you can chop them up and edit them on the timeline just like iMovie. It's as easy to use but more professional. More complex? Only if you delve deep into the features.
When it comes to exporting the video for the web, Premiere has the presets built in for Vimeo and YouTube but I recommend custom settings. Choose H.264 and see the attached screen grab for the rest. No need to go into the other tabs to change anything like 'Filters', etc. This will give you footage which is the same quality as what the Leica produced in-camera.
Stay organized
When exporting video, name the final version the same event number as the folder with the original clips.
Vimeo Pro account
For your videos you may consider having a Vimeo Pro account as that allows more and larger files. Vimeo is better interface and image quality than YouTube (but you can use both), and has the feature that you can replace a video file (YouTube doesn't). Often you may want to edit a small thing or correct a spelling error after your video went online, and then it is handy that you can simply replace the video.
Vimeo allows you to make your video private, with a password for selected people, or even hidden from Vimeo, but embedded on your website. As for example the Hendrix video further down this page where the music rights allow me to use it on my page, but not on Vimeo or other pages. Hence I have set it so you can't see it on Vimeo, nor embed it on other pages.
Vimeo will also work as your personal backup archive as you can download the file from Vimeo, should it be lost somehow, some day.
Grading and post production
It is very common to grade video, meaning that you give a look to it. You use a program like Film Convert where you, based on a camera profile, get a basic look that you work from. Then you can add sharpness, contrast, 70ies look, monochrom, etc. Look at a movie like ARGO that was not filmed with 1980ies equipment. It was graded to look as if it was.
For grading pursoses, the file from the camera should be flavorless and flat, neutral, as possible. The Leica M Type 240 lacks some possibilities for this, compared to for example Canon 5D III. The closest we have gotten is to set the Film Mode to "Off". The Film Modes in the Leica M Type 240 can be too contrasty and colorful. But judge for your self. In the video on top, the part from 2:01 to 2:12 was with Smooth Color Film whilst the rest is with Film Mode set to Off. For several reasons the video on top of this page is not graded at all.
Film Mode set to: Smooth Color Film
Film Mode set to: Off
Sensor dust
One should be extremely aware of possible sensor dust doing video. When you shoot at f/4.0 sensor dust is much more visible than at f/1.4, and at f/11 it becomes even more visible.
The way to get rid of sensor dust is to remove it before you shoot - or remove it and then shoot the part again. You can't edit it out the same way as in still.
Cleaning mode with preview of dust
The Leica M Type 240 has a cleaning mode that allows you to see the dust spots on the preview screen. So that will help (as you don't have to record the video and then check it).
My feeling is that turning off LV (Live View) before changing lenses might help. When the Leica M type 240 is in Live View the shutter curtain is up. When you take off a lens, the shutter curtain closes to protect the sensor from dust, rain and snow. But if you turn off Live View by simply pressing the LV button before changing lenses, you minimize the risk for dust moving around and getting to the sensor.
A macro still from the video, using Leica M Type 240 handheld with Leica 50mm Noctilux-M ASPH f/0.95 @ f/0.95 with Leitz M-to-M macro adapter "Oufro". 800 ISO, 1/50, 25 fps, Film Mode "Off".
The dangerous new cult called "Depth Of Field"
A true story: Recently I was researching a person and googled him. I found very few things, but I did find his YouTube video channel, and in that a video called "Depth of Field Technique."
"Aha!" I thought, "he is into some alternative mysterious new wave thing and he wants to meet me to recruit me." So I go to the video to get an idea of how strange and wierd this thing might be, and what do I find?
A video about DOF - the Depth Of Field in photography!
Not a strange new cult or new wave thing someone makes billions selling via multilevel marketing, but the technique of having very narrow focus in photography by using a lightstrong lens, getting beautiful out of focus areas (also known as 'bokeh').
Stupid of me, yet not that far from the truth in the matter of video.
Many Leica photogarphers (and dSLR shooters as well) will have experienced clients, family members and others looking with awe on their pictures and asking, "How do you make the background look so creamy? It looks beautiful! I just want to eat it! It's sooo sexy!", and that is in essence the cult called Depth of Field.
Why Depth of Field must be fought with all means
Now, here comes the interesting thing. Videographers in general don't want DOF, or at least not as much as we still photographers do. How would you maintain focus if the focus is thin as ice, say 1 inch (25mm) and the camera or the subject moves?
Hence, for most videographing the f-stop is f/4.0 or f/5.6 and the lens is a wide angle lens which has even less DOF and more sharpness.
Further they prefer zoom lenses because it is easier to work with.
I have been lending out a few R lenses through the last years to videographers, and I always found it odd that they preferred a 35-70mm f/4.0 when I offered them a 35-70mm f/2.8 or the crown jewel of Leica R lenses, the 80mm Summilux-M f/1.4.
DOF is aesthetics, but videography is not as much about aesthetics as getting the shot in focus. "To See"
Or money for nothing, as Dire Straits sing. One of the qualities of using a Leica M Type 240 for still photography is that you use the best lenses money can buy. Wide open at f/0.95, f/1,4 and f/2,0 they perform so well must often dry our eyes and thank the lens designer Peter Karbe in our prayers.
But if you are a videographer who travels with a lot of gear, including lights and you prefer to shoot at f/4.0 or smaller apertures to ensure sharpness, work in a limited resolution compared to 24 MP still files and are used to enhancing the images in post production (grading), then quite a few lenses can do a similar job for less. Why buy the best and most lightstrong lenses if value for money is what matters?
It is not that the Leica 35-70mm Vario-Elmarit-R f/4.0 is a bad lens. I've had several videographers who borrowed it and liked it as much or better than the Zeiss they normally would use. But the Leica 50mm Noctilux-M ASPH f/0,95 is outstanding, even wide open at f/0,95. Hence we did a test to see the difference between the two, including the possibility to use 200 ISO for the Noctilux and 800 ISO for the Vario-Elmarit:
50mm Noctilux-M ASPH f/0.95 at f/1.4, 200 ISO
35-70mm Vario-Elmar-R f/4.0 at f/4.0, 800 ISO
Of course, if you want to play with DOF, you also have to play with sparkling bokeh, hence your composition must be in three dimensions, not only two.
Three types of Leica M Type 240 video users
1. The videographer who does reportages for television, company documentaries, weddings or anything else that make him or her work with the video a lot every day.
The HDSLR concept is four years old now (shooting video with a dSLR) and the trend is going towards video cameras rather than dSLR cameras.
The compactness of the Leica M Type 240 will not mean much to them as they carry quite a lot of equipment already. Tripods, extra light, microphones, batteries, cables and all.
The acoustic viewfinder of the Leica M Type 240 they will never use for video.
The complete lack of understanding for videographers' needs in a video camera that Leica Camera AG seems to have applied during the development of the Leica M Type 240 firmware and hardware will isolate the camera to a very narrow field of videographers that either want some exotic B-roll, have an unfulfilled love for Leica and/or want to have a high quality still camera with them.
The image quality is good, but not better than Canon 5D III as far as we can tell by now, and the outstanding Leica M lenses will not be used wide open.
If you look deep down into a videographers bags you will find it extremely practical, packed for all eventualities (including screw drivers, gaffer tape and malaria pills), and first and foremost reliability and cost benefit. If you turn around and look at the videographer himself or herself, you will not be met by an image from Vogue, but a person ready to climb Mount Everest in snow and rain.
So many things speak for videographers not buying the Leica M Type 240.
It may be a misunderstanding that anyone thought that Leica Camera AG wanted to sell cameras to videographers. Everything in the Leica M Type 240 suggests that Leica Camera AG looked at the success of having video in consumer cameras like the Leica D-Lux 6 and thought, "Let's add a video recording button the the Leica M Type 240".
And so they did. But not much more.
2. The wannabe filmmaker would be the one who wants to do a real motion picture but lacks the studio, the tailers packed with A-listers, the 200+ staffers, gaffers and assistant directors ... but in the Leica M Type 240 eye a possiblity to make an HD video in the spirit of a motion picture.
The artistic look, the use of light to create atmosphere and aesthetic, using daring small depth of field.
The limit of the Leica M Type 240 is the ability to use it handheld. It can be done, perhaps, if you are good at it and use weight for stabilizing. But that is a technique of you as camera operator, not a built-in feature of the camera.
For the exotic and creative wannabe-filmmaker the Leica M Type 240 features a range of the best and most exotic lenses in the world, including the possibility to add Leica R and even Nikon lenses to the setup (using Leica R-to-M adaptor or a third party Nikon-to-M adaptor).
3. The Leica M photographer is the one like me. I never asked for video in my Leica M but welcomed the opportunity to try it out.
Some will argue that video is on the rise and still photographers should offer that to clients as well, and in that concept the Leica M Type 240 might be interesting. I must admit it has me thinking, "How may I make more revenue by also supplying some video clips from for example an assignment in Vietnam, when anyways there for a photo assignment?"
In my case the question is extended to also include the consideration, "without becoming a videographer; without risking being sent out to do video instead of stills?". Because I don't want to do video, I want to do still. I don't want to transfer into a videographer.
Not everyone may feel like me. Others may welcome the idea of doing both, or even doing more video and less or no still photography.
Maybe the Leica D-Lux 6 or even an iPhone is good anough for what you want to do
The Leica M Type 240 is good for one type of video in my current viewpoint, and that is artsy video that looks like the images I would do. I have recently used the Leica D-Lux 6 for video for travel blogs and magazines' websites because it is easy to have with you, easy to use and fullfills some basic needs to see and hear things. It also, it turns out, does amazingly sharp and nice looking video without much knowledge or trying hard, hence it may be used for web television on a magazines website, or as "On the Road" stories on my own website:
One of my On the Road with Thorsten Overgaard videos, a Behind the Scenes of Album Cover Shoot for Danish pop star Louise Dubiel. Filmed with Leica D-Lux 6 and edited in iMovie.
I will not spend many words on this, but leave it up to your own experience and fantasy as a Leica M still photographer to envision what using Leica M for video will limit you to, or on the other hand require of you if you wish to make it better quality.
What I see is that I can do tripod video stills with amazing DOF, clarity and quality, location interviews with fairly good sound quality and atmosphere videos on exotic locations, day and night. I can do that and send the video files to the magazine for them to edit, or have an assistant work with it in case I wanted to build a video archive.
The problem arises if I want to do more than that. Just doing a panorama over a city with the Leica M Type 240 would require a tripod with a video head, or some other device that would enable some stable movement. A top notch sound quality for the location interview would require an external recorder. And so on.
In other words, before I would know of it, my equipment would escalate from one camera and one lens (ideally) to a backpack of extra things.
And also, would I be doing video that would require a Leica M Type 240 with great Leica glass, or could I simply pack a Leica D-Lux 6 and do satisfactory video with that. Or even better, just forget about video?
I agree this is a consideration we all have to perform - should I do video and stills, or just stills - and then reconsider again as times they are a changin'. But I don't agree that everybody has to make video.
And especially the factory owner, banker or dentist who have found happiness in creating aesthetics with a Leica M in his spare time. Why should he be burdened with doing videos of the kids, family reunions and editing them? Maybe he should just enjoy creating aesthetic stills.
And even more importantly, if you are to do video, is the Leica M then the right tool for that? The trend is that videographers move towards high definition video cameras and away from dSLR cameras with video.
4. The filmmaker could be a possible fourth category, and whilst they may like the Leica M Type 240, the resolution is not for filmmaking.
They may use Leica C lenses made for movie cameras, or even buy a Leica R or Leica M adapter for their RED camera to attach Leica R or Leica M lenses.
Did Leica Camera f... up?
In my opinon, short and simply yes.
Let's just assume there is a reason to change from CCD sensor to CMOS sensor apart from the fact that the sensor is more economical to produce and use, performs higher ISO, allows Live View (focusing and meter reading from the sensor image) and video.
Why would Leica produce a number of prototypes to send out to photogaphers so as to use their response to fine tune the Leica M camera concept, but never involved any videographers in the development of their first Leica M with video?
I'm taking a bold standpoint here and saying that they didn't. So many things are not designed for video in the Leica M Type 240 that it indicates that Leica Camera AG simply tried to resemble the Leica D-Lux 6. A consumer amera that is very good for consumers, but unlikely to be used for videographers or professional filmmakers.
Some of the blunders may be fixed in firmware, whilst others may be fixed in hardware updates. To summarize what should be done, rather than focusing what is missing, let's imagine a version 2 of the Leica M Type 240 with updated firmware and hardware:
Leica M Type 240 future version 2
Preview with 16:9 bars:
Preview with 4:3 size sensor (24 x 36 mm full frame):
Dedicated video mode in the menu
The Leica M Type 240 will get a dedicated video mode in the menu that will switch on 16:9 bars instead of a 4:3 preview in the EVF2 viewfinder and on the display on the back. The video mode will also change the Film Settings in the menu to include;
Shutter speed always 1/50
Despite what the shutter speed dial is set to by accident or on purpose, the menu will tell the videographer that the shutter speed is now maximum 1/50.
Flat image setting and more user-defined file types for videographers
Much of what videographers do is edited and graded in software later. Hence they depend on a 'flat' image that is not saturated, sharpened or otherwise improved in the camera.
Preference for compression
The videographer can preview and change the bit rate.
Preference for file size or time limit
The maximum video file size is 4 GB or 30 minutes, but depending on compression the maximum file size may have been reached after 18 minutes or 25 minutes. Therefore the videographer can make a choice if he wants a warning 120 seconds before one of these limits are met, and/or if the videographer wants to set a shorter time limit that will allow an uncompressed recording.
Focusing while recording
In the updated version one can focus both on the preview screen and in the viewfinder during recording, and focus peak can be set to turn on automatically.
New features for both still photographers and videographers:
Live View real time metering
Both for still and video a real-time preview of the image will be possible so that one doesn't need to press down the shutter release half to see the actual preview. This will allow the videographer to use that one finger for something more important, for example pressing the front button to focus.
Live View real time metering during ISO setting
Some have complained that the ISO is not as in the Leica M9. Instead of all the ISO settings on one screen to scroll through and select from, there is only one in the top to change. But this gives space for a real time preview on the screen of the effect of the ISO change. Particuarly helpful for videographers who use the ISO and aperture to adjust exposure based on the Live View.
Focus peak can be moved
The focus peak can be in the center of the screen by default, but the photographer can move it up and down and sideways whilst focusing and recording using the arrow key.
Menu brightness preview is visible in viewfinder
Using the EVF2 the videographer and photographer can see the menu in the viewfinder (when switched on; as he or she can see preview of images played back from the camera in the viewfinder), and also see a preview of viewfinder brightness in the viewfinder when adjusting it.
New hardware features added:
Image stabilization added
To use the Leica M handheld the choice of image stabilization will be added.
External DHMIs and sound input/exit via hand grip
A new hand grip will be available that use the multi-connection under the camera to add possibilities for extra HDMI (for external viewing screen), power supply, headphones and extra microphones via the bottom plate.
Leica ND filters
Leica Camera AG will be designing, producing and selling ND-filters for their lenses, as well as Variable Neutral density filters.
Leica M (aka Leica M10 or M240 or Type 240) in black paint. Also available in silver/chrome (below). The Focus Peak button is the chrome one below the M, and when pressed, you use the Thumb Wheel on the back (see below) to decide how much you will zoom in. And then you focus.
1:2/50 the description says.
But what does it mean?
1: = Basically means 1 divided with. On the lens to the right, it means that the diameter of the hole throught he lens is 25mm.
We would normall call it
a 50mm f/2.0 lens. The writing of 1:2/50 is a tradition from the 1800's of specifying a lens, which reveals quite a bit about the construction: Focal length 50mm simply means that the distance from center of focus inside the lens to the focusing plane (the sensor or film) is 50mm, and the aperture of f/2 or 1:2 means that the diameter of the hole the light comes throught is 25mm (50mm divided with 2 = 25mm).
In traditional lens design, one could usually tell from looking at the length of a lens if it was a 400mm, 100mm or 35mm. Newer designs with mirrors (in tele lenses) and more corrections (in wide lenses) can make the size of the lenses shorter or longer, but the distance from center of focus to sensor in a modern 50mm lens will still be 50mm for a 50mm and 400mm for a 400mm, and so on.
See Focal length and Aperture further down for more.
35mm
a) 35mm lens is a lens that has a viewing angle of view is 63°vertically, 54° horizontally and 38° vertically within a 35mm film frame or "full-frame" 24x36mm digital format. See Focal length further down.
b) 35mm focal length: the distance from center of focus inside the lens to the focusing plane (the sensor or film) is 35mm.
35mm film format (also known as full-frame)
c) 35mm film format (also known as full-frame in digital sensors) was a standard film format that came about in 1892 where the width of the film roll was 35mm, and it's been the most used format ever since. Only a format of 24 x 36mm is used for the photo on the film roll.
35mm film format was first used in 1892 by William Dickson and Thomas Edison for moving pictures with frames of 24 x 18mm, using film supplied by George Eastman (Kodak), and this became the international standard for motion picture negative film in 1909. Later other motion picture formats came about, such as Academy Ratio (22 x 16 mm), Widescreen (21.95 x 18.6 mm), Super 35 (24.89 x 18.66 mm) and Techiscope (22 x 9.47 mm).
The inventor of the Leica camera, Oskar Barnack, built his prototype Ur-Leica in 1913 as a device to test film stock and\ motion picture lenses and had it patented. Putting 35mm film format into a small camera gave him the idea "small negative, large print" and he decided to increase the size of each frame on the 35mm film to 24x36mm (for more detail and sharpness), and then invented an enlarger to make large prints from the small negative. The length of a film, 36 pictures, is said to have become the standard because that was how far Oskar Barnack could stretch his arms (when cutting film from larger rolls to put them into film rolls for the Leica camera).
d) 35mm equivalent is often given as a standard when talking about lenses in small compact-cameras or large format cameras with other sensor/film format than the 24 x 36mm frame. Example: A camera with a 12 x 18 mm sensor has a 14mm lens on it, and even the lens is actually a 14mm, it is specified as a 28mm lens because the viewing angle that ends up on the sensor is equivalent to a 28mm lens on a 35mm of full-frame camera.
The Leica 50mm APO-Summicron-M
ASPH f/2.0 lens
50mm
a) 50mm lens is a lens that has a viewing angle of view is 47° vertically, 40° horizontally and 27° vertically within a 35mm film frame.
b) 50mm means there is 50mm from the center of focus inside the lens to the focal plane (sensor or film).
c) 50mm lens is often compared to the human eye. Not because of viewing angle (how wide it sees) but because of size ratio (how it sees). The 50mm lens is the lens that comes closest to the size that the human eye see things. Whereas the human eye has a much wider angle of view [120-200°] than the 50mm lens [47°].
AF = Auto Focus. The idea is that the camera does the focusing itself (the word auto comes from Greek "self").
Aperture = The same function as the iris and pupil has in the eye. The pupil in the eye is the dark circular opening in the center of the iris of the eye, varying in size to regulate the amount of light reaching the retina (the sensor area inside the eye).
Aperture on a camera is the f/ stop on the camera that regulates how much light passes through the lens by increasing or decreasing the hole through the lens. On a f/2.0 lens the lens is fully open" at f/2.0. At f/2.8 the aperture inside the lens make the hole through the lens smaller so only half the amount of light at f/2.0 passes through. For each f/-stop (4.0 - 5.6 - 8.0 - 11 - 16) you halve the light. The aperture of the lens is basically the focal length divided with the f/-stop = size of the hole (50mm divided with f/2.0 = the hole is 25 mm in diameter).
Besides regulating the amount of light (so as to match the correct exposure), the aperture also affects the dept of field: , which is how deep the sharpness is. To get the sough-after photos with narrow depth of field where the background is blurry, the lens has to be wide open at f/2.0 or so. Stopping the lens down to f/8 or f/16 will result on more depth of field, meaning the background will start becoming in focus. To maintain narrow depth of field, one can use the ISO sensitivity and/or the shutter speed to match the correct exposure (as aperture is only one of three ways to control the exposure; the correct amount of light). ORIGIN: Late Middle English : from Latin apertura, from apert- ‘opened,’ from aperire ‘to open’.
Aperture Priority Mode = When the shutter speed dial on top of a Leica M camera is set to A, it is short for “Aperture Priority” and allows the user to set a specific aperture value (f-number) while the camera selects a shutter speed to match it that will result in proper exposure based on the lighting conditions as measured by the camera's light meter. In other words, you set the aperture as priority (f/1.4 for example), and the camera calculates a shutter speed (1/250 of a second) that matches that. If you change the aperture to f/2.0 by changing the aperture ring on the lens, the camera will re-calculate the speed to 1/125 so as to get the same amount of light to hit the sensor (f/2.0 is half the light through the lens as f/1.4 and 1/125 if twice the amount of light on the sensor as 1/250).
APO corrected basically means that the red, green and blue has been corrected to meet more precisely in the same spot. Clarity of colors and definition of details would be the result.
APO = in lens terminology stands for "apochromatically corrected". In most lenses, optical design concentrates the focus of blue light and green light into a single plane, but red light falls slightly into another plane of focus. In APO lenses, the design and expense has been put in to making red light focus on the same plane as blue and green. Under a microscope you would see that all light subject is now in focus, creating a sharper image overall. Many manufacturers offer APO designs, but in most of these only the very center of the lens is APO corrected. Leica prides itself on making most of the frame APO corrected.
APo-correction has traditionally been used for long tele lenses (and periscopes), but in recent years APO-correction has been applied to 50mm and wide angle lenses as well. One will notice that the colors are really bright and alive, almost more real than to the eye, in lenses like the Leica 90mm APO-Summicron-M ASPH f/2.0 and 50mm APO-Summicron-M ASPH f/2.0.
Apochromat; ORIGIN early 20th century, made of the two words; apo (Greek origin, away from) and chromatic (Latin origin, meaing relating to color).
spherical (ball)
a-spherical (non-ball)
ASPH = (Aspherical lens) stands for "aspheric design".
Most lenses have a spherical design - that is, the radius
of curvature is constant. These are easy to manufacture by
grinding while "spinning" the glass. This design
however restricts the number of optical corrections that can
be made to the design to render the most realistic image possible.
ASPH lenses (a-spherical, meaning non-spherical), however, involve usually 1 element that does
*not* have a constant radius of curvature. These elements
can be made by 1) expensive manual grinding, 2) molded plastic,
or 3) Leica's patented "press" process, where the element
is pressed into an aspherical ("non-spherical")
shape. This design allows Leica to introduce corrections
into compact lens designs that weren't possible before. Practically,
the lens performs "better" (up to interpretation)
due to increased correction of the image, in a package not
significantly bigger than the spherical version.
There is another Aspherical lens manufacture technique: an uneven coating layer is applied to a spherical lens. The coating is thicker on the edges (or on the center, depending). Canon "Lens Work II" calls these "simulated" aspherical lenses. Simulated and Glass-Molded (GMo) asphericals show up in non-L Canon lenses, while the L lenses have actual ground aspheric elements.
A- means non, or without.From Latin, ex. Sphere: ORIGIN Middle English : from Old French espere, from late Latin sphera, earlier sphaera, from Greek sphaira "ball".
Normal spheric lens (grinded)
ASPH (note the shape of the glass as result of pressing rather than grinding)
Auto- means “self”. The idea is that when a camera has auto-(something), it does that (something) by itself.
Banding = Noise in digital images. Horizontal lines in a horizontal picture (if the camera is in portrait mode/vertical, the lines will obviously be vertical). It's simply noise; the result of uncontrolled algorithms working overtime with an image the sensor really can't see because it's very dark. (If your image has vertical lines in it, it is more likely that the sensor needs remapping).
This image at 6400 ISO, underexposed and then brought up to correct exposure in Lightroom, displays banding: Horizontal lines in the image. Leica M-D 262 with Leica 50mm APO-Summicron-M ASPH f/2.0.
Base ISO = The ISO the digital sensor was born with. Even a digital sensor goes from say 50 ISO to 25,000 ISO, it only has one base ISO. Any other setting is an algorithm that figures out how the image whould look if there was 64 times more light, or half the light, etc.
When you go down from Base ISO (for example 200 to 100 ISO), you can expect a
decrease in quality. When you go up, the decrease is much less. For some sensors, you loose 2-3 stops by going down 1 step in ISO, but can go 8 steps up and only loose 1 stop in dynamic range. Basically, your ISO range should be from Base ISO and as far up as you can, before you see visible decrease in quality (mostly 3200 ISO - 6400 ISO).
Base ISO for Leica M9 is 160 ISO, for Leica M240 it is 200 ISO. For Leica M10 it is around 160 ISO. For Leica M Monochrom it is 320 ISO. For Leica Q and Leica Q2 it is around 100 ISO. For Panasonic Lumix S it is 200 ISO. For most Canon cameras the base ISO is around 100, for most Nikon cameras it is around 200 ISO.
Bokeh = The visual quality of the out-of-focus areas of a photographic image, especially as rendered by a particular lens: It's a matter of taste and usually photographers discuss a 'nice' or 'pleasant' bokeh (the out-of-focus area is always unsharp, which is why the quality discussed is if one likes the way it renders or not by a particular lens). The closer you get to something, the 'more' bokeh' you get (in that the focus becomes less for the background and foreground at close distances than at long distances). ORIGIN from Japanese 'bo-ke' which mean 'fuzzines' or 'blur.'.
C = Continuous shooting. When the ring by the Shutter Release on top of the camera (or in the menu of digital cameras that doesn't have such a feature on the outide of the camera) is moved from OFF to C, the camera takes series of images as long as the shutter release is pressed down. In some cameras the speed of continious shooting can be adjusted.
Camera comes from Chambre, mostly in relation to Spanish soldiers’ rooms. Obscura means 'dark', so a dark room is basically the derivation for the word camera.
Camera -is today’s short name for Camera Obscura (meaning “a dark room”). CamerameansChambre and was used only as a Latin or alien word, actually only for Spanish soldiers’ rooms, until popularized in connection with photography in 1727: “Camera Obscura”. In 1793 the slang term “camera” was used by Sterne Tr. Shandy: “Will make drawings of you in the camera” and by Foster (1878), “The eye is a camera”. Camera Obscura was described by Iraqi scientist Ibn-al-Haytham in his book, “Book of Optics” (1021) and by Leonardo da Vinci in 1500; popularized and made widely known in 1589 by Baptista Porta when he mentioned the principle in his book “Natural Magic”. Johannes Kepler mentions Camera Obscura in 1604.
Camera = chambre (room), Obscura = dark (or cover).
Why is it called a "camera"..?
The word Camera is today's short name for Camera Obscura (which originally means “a dark room”).
Origin of the word Obscura means "dark" or "covered", and the word Camera meansChambre and was used originally only as a Latin or alien word, actually only for Spanish soldiers' rooms, until popularized in connection with photography in 1727: “Camera Obscura”.
In 1793 the slang term “camera” was used by Sterne Tr. Shandy: “Will make drawings of you in the camera” and by Foster (1878), “The eye is a camera”.
Ibn-al-Haytham mentioned Camera Obscura in his "Book of Optics" in 1021.
The concept of Camera Obscura was described by Iraqi scientist Ibn-al-Haytham in his book, “Book of Optics” (1021) and by Leonardo da Vinci in 1500; popularized and made widely known in 1589 by Baptista Porta when he mentioned the principle in his book “Natural Magic”. Johannes Kepler mentions Camera Obscura in 1604.
Camera = chambre (room), Obscura = dark (or cover).
CCD sensor (as used in Leica M8, M9, Leica S)= (Charged Coupling Devices) - The first digital cameras used CCD to turn images from analog light signals into digital pixels. They're made through a special manufacturing process that allows the conversion to take place in the chip without distortion. This creates high quality sensors that produce excellent images. But, because they require special manufacturing, they are more expensive than their newer CMOS counter parts.
CLA
An acronym for "(C)lean, (L)ubricate & (A)djust", whereby the item is merely re-lubricated, fine-adjusted and calibrated rather than repaired. "I just got my equipment back from CLA at Leica"
CMOS sensor (as used in Leica CL, Leica T/TL/TL2, Leica M10, Leica M 240, Leica M Monochrom Typ 246, Leica S Typ 007, Leica SL, Leica Q, Leica Q2, Leica M10, Leica X, Leica D-Lux, etc.) = (Complimentary Metal Oxide Semiconductor) chips use transistors at each pixel to move the charge through traditional wires. This offers flexibility because each pixel is treated individually. Traditional manufacturing processes are used to make CMOS. It's the same as creating microchips. Because they're easier to produce, CMOS sensors are cheaper than CCD sensors. CMOS allow Live View and use less energy than CCD.
Collapsible - Usually refers to a collapsible lens such as the Leica 50mm Elmarit-M f/2.8 Collapsible, or Leica 90mm Macro Elmar-M f4.0 Collapsible, etc. A collapsible lens is one that can collaps into a compact lens when not in use.
Contrast - The degree of difference between tones in a picture. Latin contra- ‘against’ + stare ‘stand.’
Normal to low contrast
High contrast
D-Lux (Digital Lux) = A series of compact digital cameras by Leica Camera AG developed with Panasonic since 2003. See my article "Compact Digital Leica Cameras" and my Leica D-Lux 7 review. Lux comes from Latin and means Light.
Lens distortion looks like this. The lines are not straight. Our eye uses distortion correction. Lens designers can design lenses so they have very little distortion, or they can make less complicated lens designs and "fix" the distortion in software.
Distortion = In photo optics/lenses: When straight lines in a scene don't remain straight because of optical aberration.
Lens designers can correct for distortion to a degree so the whole image field is perfect corrected and all lines remain straight. In modern lens design many designs rely on Software Distortion Correction (SDC).
The eye adjusts for distortion so we always see vertical and horizontal lines straight when we look at things. Even when you get new prescription glasses (if you use such), you will often experience distortion in your new glasses. After a few days they eyes have adjusted for the glasses and the distortion you saw to begin with is now gone. Software Distortion Correction (SDC) is far behind what the human eye can perform of adjustments. (Also see my definition on Perspective for more on the eye and optics)
DNG = Digital Negative, an open standard developed by Adobe. It is a single file that contains the raw image data from the sensor of the camera as well as date, time, GPS, focal length, settings, etc.
The alternative is a RAW file + XMP file where the RAW file contains the image information and the XMP contains the rest of information about where, how and when the picture was taken, as well as editing data when the photo is edited in Lightroom or Capture One.
A Camera Raw profile (that is specific for that camera) in the computer helps the software program, for example Adobe Lightroom, to translate the RAW data into the image. Camera producers provide a Camera profile with their camera, and Adobe makes their own 'refined' Adobe Raw camera profile for all new cameras.
A raw file (or DNG) is simply the full recording of digital data (1's and 0's) from the sensor. In the computer, the sensor data is translated into the exact colors, via a camera profile.
The lines on this 28mm lens indicates the DOF. Here the focus is on infinity, and if the lens is stopped down to f/1.6, objects from 1.8 meter to ininity will be 'acceptable sharp'.
DOF = Depth of Field (or Depth of Focus), an expression for how deep the focus is, or (more often use to express) how narrow the area of focus is. This is how much of the image, measured in depth or ditance, will be in focus or "acceptable sharp".
The appearance of the DOF is determined by:
1) aperture (the smaller the aperture hole is, the deeper is the depth of field, and opposite, the wider open a lens you se, the more narrow will the DOF be) and
2) distance to the subject (the farther away, the larger area is sharp; the closer the subject in focus is, the more narrow the DOF gets)..
The DOF scale measurement on top of the Leica lenses shows lines for each f-stop that indicates from which distance to which distance the image will be sharp. Shallow DOF is a generally used term in photography that refer to lenses with very narrow focus tolerance, like f/1.4 and f/0.95 lenses, which can be used to do selective focus; making irrelevant subjects in the foreground and background blurry so only the subjects of essence are in focus and catches the viewers eye).
in modern cameras like the Leica SL2, the camera has a DOF scale inside the viewfinder. As DOF is the same for all lens brands and designs, only depending on focal length, distance and aperture f-stop, the camera can calculate it and show a 'digital DOF scale" in the viewfinder.
Depth Of Field scale from Fujifilm, same lens with different aperture settings from f/2.0 to f/8.0.
Dynamic range. The grade of ‘contrast range’ (or number of tones) a film or sensor, or simply a photograph, possess between bright and dark tones. The human eye is said to have a dynamic range of 10-14 ‘stops’ (but because we scan area by area and compile a concept of the overall scene, they eye is often thought to have a much higher dynamic range), Film used to have 7-13 ‘stops’ and some modern sensors have up to 15-17 ‘stops’.
E - Diameter in Leica filters and screw diameter, as in E46 which means that the filter diameter is 49mm for this lens. In general language, one would see Ø46 used, as Ø is the general symbol for diameter.
Elmar = Refers to the maximum lens aperture - here f3.5 . Historically derived from the original 1925 50mm f3.5 Elmax lens, which was an acronym of (E)rnst (L)ieca and Professor (Max) Berek, designer of the original lenses. Later that year the 50mm f3.5 Elmar superceded the Elmax, which was discontinued due to its complexity and high cost of manufacture.
Elmarit = Refers to the maximum lens aperture - here f2.8 . The name is obviously derived from the earlier (and slower) "Elmar" designation. Not every f/2.8 lens is called an "Elmarit" though, the most obvious current exception being the 50mm f2.8 Elmar-M collapsible lens which for nostalgia and marketing reasons has kept the original 1930's Elmar name (the 50mm f3.5 collapsible Elmar, manufactured 1930-59, was one of Leica's most famous and popular lenses). Vario-Elmarit (and Vario-Summicron, etc) is Leica Camera AG's name for zoom lenses.
Elmax
Elmax lens named after = Ernst Leitz + Max Berak. Ernst Leitz was the founder of Ernst Leitz Optical Industry which later became Leica. Professor Dr.Max Berak was employed at Leica in 1912 and was the architech of the first Leica lens which Ernst Leitz asked him to design for the "Barnack's camera" (the 1913-prototype named after Oscar Barnack who invented it). The lens was a f/3.5 50mm and was known as the Leitz Anstigmat and later the Elmax.
The Leitz Elmax 50mm f/3,5 (1925-1961) on the Leica A camera (1925) camera. Photo by Marco Cavina.
EVF = Electronic ViewFinder. A viewfinder where you look at a small screen through optics/prisms. The advantage is that you see what the sensor sees.
The EVF (Electronic Viewfinder) on the Leica SL 601.
EXIF =Exchangeable Image File, a file generated in camera and enclosed in the image file that contains recording information on the image such as shutter speed, exposure compensation, what metering system was used, aperture setting, ISO setting, date and time the image was taken, whitebalance, which lens was used, camera model and serial number. Some images may even store GPS information so you can see where the image were taken. The data from the EXIF file continues to follow any later editions of the image and can be read in photo editing software such as Capture One and Lightroom, as well as Photoshop (go to the menu File > File Info). There is also software available that can read EXIF data from any file, like Exifdata.com.
The EXIF data is all the information about shutter speed, metering method, ISO, etc. - and then some more that you don't see on the screen (such as camera model, serial number, lens used, etc).
Exposure Bracketing = The possibility to set the camera to automatically record a series of images where the exposure is above and below what the camera measures. The idea is that at least one of the images will be correctly exposed.
f/ (f-stop, also known as aperture).
f- (focal length). Often given in mm, for example 90mm. In the past they were often given in cm or inch, for example 9.5 cm or 3.2 inch.
f-stop = the ratio of the focal length (for example 50mm) of a camera lens to the diameter of the aperture being used for a particular shot. (E.g., f/8, indicating that the focal length is eight times the diameter of the aperture hole: 50mm/8 = 6,25 mm); or the other way around, the hole is the focal length divided with 8).
ORIGIN early 20th cent.: from f (denoting the focal length) and number.
One f-stop is a doubling or halving of the light going through the lens to the film, by adjusting the aperture riing. Adjusting the f-setting from f 1.4 to f.2.0 is halving the light that goes through the lens. Most Leica lenses has half f-stops to enable the photographer to adjust the light more precicely.
Filters = Glass filters you put in front of the lens. A much used filter is the claer UV filter that is supposed to protects the front of the lens. Other filters are color filters that add effects to black and white photography by changing the color balance. Other filters are ND (Neutral Density) filters that reduce the amount of light coming through (used for for example video recordings as video is usuallu filmed at 1/50th second shutter speed and thus most lenses are too bright wide open. Or they are used for long exposure photography in order to record for example stars movements over the sky. Other filters are filters that create star effects, or blur the view, and almost any effect you can think of.
A traditional Yellow filter in 49mm diameter to screw onto the front of the lens. The yellow filter is used for black and white photography where it slightly darkens skies, helps to cut through haze, and improves overall contrast. Yellows and reds within the scene are also lightened.
Flare = Burst of light. Internal reflections between (and within) lens elements inside a lens. Mostly, flare has a characteristic "space travel" look to it, making it cool. Particularly in older lenses with less or no coating of the glass surfaces to suppress this, it can be a really cool effect. In newer lens designs, the coatings and overall design try to suppress flare and any reflections to a degree, so that there is seldom any flare to be picked up (moving the lens to pick up a strong sunbeam), but instead a "milking out" (or "ghosting") of a circular area of the frame; meaning simply overexposed without any flare-looking flares.
Sunlight creating (fairly supressed) flare in the bottom right quadrant of the image of a modern lens.
Lens Flare in Star Trek (2013). JJ Abrams famously said, "I know there's too much lens flare ... I just love it so much. But I think admitting you're an addict is the first step towards recovery (ha ha)"
FLE = See "Floating Elements"
Flickering in the EVF is very normal and will apear often without the vertical lines you see in the EVF will be in the picture.
Floating elements (a group of lenses or can also be s aingle lens element). .
Floating Elements (FLE) = Near focus correction in a lens by having a single lens or a group of lenses floating independently of the other lenses. Most lenses are born with poor performance at their closest focusing distance. Center sharpness may be good, but aberrations and corner softness increase when you’re shooting closeups. Floating elements are lens elements outside of the primary focus group that change position when the lens is focused on a close object, correcting aberrations and improving close up performance. Floating Elements originally was coined by Canon in the 1960's and quickly became the general term for this feature. Other brands came up with new names for the same thing, Minolta called it Floating Focusing, Nikon used the term Close-Range Correction (CRC), Leica call it FLE/Floating Elements.
Floating elements are for close-focus improvement of image quality and not for reducing "focus shift". Floating elements by themselves cannot reduce focus shift, but by reducing the impact of focus distance on performance, they give the designers more freedom in other areas - which could include minimising focus shift.
(As a side-note, when a lens "rattler when moved, it is not the floating elements "floating around" but can be the IS (Image Stabilization) elements for elense that has that, AF elements for auto focus lenses, or the aperture cage that rattles (as in the case of the Leica 35mm Summilux-M f/1.4 FLE - if you stop down the Summilux to f/16, the sound is usually not there).
A 28 mm lens has a 74° viewing angle
Focal length = Originally focal length referred to the distance from the sensor (or film in older days) to the center of focus inside the lens (28mm, 50mm, 400mm, etc). Today one call it effective focal length (EFL) as a 400mm lens is not nessesarily 400mm long due to optical constructions that can make it shorter. The 35-420mm zoom on the Leica V-Lux 1 is for example only ca. 135 mm long. Nobody uses that measurement, except those who construct lenses! For users of lenses, focal length refers to how wide the lens sees. The viewing angle, which is often given in for example 90° viewing angle for a 21mm lens, 74° viewing angle for a 28mm lens, 6° viewing angle for a 400mm lens, etc.
Each human eye individually has anywhere from a 120° to 200° angle of view, but focus only in the center.
Focus, in - Sharp and clear in appearance. Focus - “The burning point (of a lens or mirror)”. In Latin the word focus meant fireplace or hearth. The word was probably first employed outside of its Latin literal use as “the burning point of a lens or mirror” in optics, and then came to mean any central point. The German astronomer Johannes Kepler first recorded the word in this sense in 1604.
Focus shift = That the focus of a lens shifts as the aperture changes. For example, if one focus a 50mm lens at f/2.0 and then stop the aperture down to f/8, the focus may change, especially noticeable in close focusing. Modern lenses with floating elements (FLE) where the floating elements adjust for image quality in close-focusing may also help avoid focus shift.
Four Thirds - Also known as "4/3" - The Four Thirds System is a standard created by Olympus and Kodak for digital SLR camera design and development.
The system provides a standard which, with digital cameras and lenses available from multiple manufacturers, allows for the interchange of lenses and bodies from different manufacturers. Companies developing 4:3 cameras and/or lenses are Fuji, Kodak, Leica, Olympus, Panasonic, Sanyo, Sigma. See www.4-3system.com
A further development in this was Micro Four Thirds Systems.
Frame lines = the lines inside a viwfinder that indicates the edger of the frame. In a Leica M, the viewfinder always is as wide view as 24-28mm. A mechanical contach on the lens (triggers the camreas frame selector) so the viewfinder shows the frame line of that lens. In the Leica M, the frame lines comes in sets, so there are alwaus twop sets of frame lines shown at any time (see illustration below).
(This is different than in most cameras where you only see what the lens captures: SLR cameras was the evolution in 1940's where the image from the lens was displayed directly onto a matte screen inside the camera via a mirror.
Later mirrorless cameras, the viewfinder shows the exact picture that the sensor sees through the lens).
Frame lines of the Leica M, here showing the set of 35mm and 90mm framelines.
Full Frame is "king of photography"
Full Frame (FF) = The size of the sensor is 24 x 36mm which is the format Oskar Barnack and Leica Camera AG invented with the first Leica that was introduced in 1925. Many other formats invented since, such as APS, APS-C and all usually refer to Full Frame ratio, by which it means what size they have compared to Full Frame. The "full frame" technically deifinition thouhg is a sensor that camtures the full frame in one go (as the early sensors as in Leica S1 scanned the image/senor over a period of time). The 24 x 36mm Full Frame format is so "king of photography" that it has continued to be the ideal for all cameras. Besides this, there exists Large Format cameras such as 4x5" (100 x 125 mm) and Medium Format 6x6 (60 x 60mm amongst other sizes in that area).
Ghosting = Secondary light or image from internal reflections between (and within) lens elements inside a lens. The reflected light may not always be in focus, so overall it looks like a "milked out" image. A subject in focus has brightened patches in front of it that come from reflections inside the lens. the most elementary look of ghosting is when you look in a rear-view mirror in a car at night and you see doubles of the headlights behind you (a strong one and a weaker one), because the headlights are reflected in a layer of clear glass on top of the mirror glass.
Degrees of ghosting from strong sunlight entering from outside the frame. To the right the outside light has been shielded with a shade.
ISO = Light sensitivity of the camera sensor is given in ISO (International Organization for Standardization). It's a standard that was used in film and is now used in all digital cameras also. The base ISO for the Leica TL2 sensor is around 100-150 which means that this is what the sensor "sees". All other levels are computer algorithms calculating the effect as if the sensor could "see" more (hence noise at higher ISO levels).
ISO goes in steps of doubling: When the ISO is raised from 100 ISO to 200 ISO, the camera only need half the amount of light to make the same picture. For each step in ISO to 400, 800, 1600, 3200, etc. the light sensitivity is doubled for the sensor (and the camera sensor only need half the light of the previous ISO to record the same image).
JPEG = A standard for picture format made in the 1990's by Joint Photographic Experts Group). Mostly referred to as JPG as in L1003455.JPG which would be the name for a JPG file from the camera.
Leica L-mount bayonet.
L-mount = Lens bayonet mount introduced by Leica for the Leica T in 2014 and used for Leica TL, Leica CL and Leica SL. Since 2019 the L-mount has also been shared with Panasonic, Sigma and others who produce cameras and lenses that are compatible with Leica L cameras and lenses lenses, and vice versa.
The L-mount has a diameter of 51.6 millimeter which is big enough for any design we could wish to design, and at the same time compact enough for the L-mount to be used on compact cameras such as Leica TL and Leica CL with APS-C sensor sizes. Leica chief lens designer Peter Karbe spent years calculating this ideal size, large enouhg for any design, yet as compact as possible. Read my article "Small Camera, Large Print" (2019) with interview with lens designer Peter Karbe for more.
After Leica introduced this new bayonet mount in 2014, Nikon (Z-mount 55mm), Fuji (G-mount 65mm) and Canon (RF-mount 54mm) followed with similar new bayonet mounts, but with bigger diameter, making them less able to produce compact lenses.
A screen on a camera is often referred to as "LCD Screen" for no particular reason (illustration is the back of the Leica Q2 special limited "James Bond/Daniel Craig & Greg Williams" version (2021).
LCD = Screen. LCD itself means liquid crystal display, which is slightly irrelevant (what it is made of) as the expression is mostly used to simply mean "screen".
Leica = A compound word derived from " (Lei)tz" and "(ca)mera". Apparently they were originally going to use "LECA", but another camera company already used a similar name in France, so they inserted the 'i' to prevent any confusion.
The word lens derives from lentil, because of the similar shape.
Lens - A piece of glass or similarly transparent material (like water or plastic) that has a shape so that it can direct light rays. The word “Lens” is used both for single piece of glass as well as a camera lens with several lenses that works together. From ‘lentil’ because similar in shape.
A camera lens consists of several shaped lens elements of glass. The lenses can also be made of simple cheap plastic as in "kit lenses" (sold with a camera as a kit to make a workable cheap package), but it is mostly very exotic glass (that can be heavy or light in weight, very hard or very soft in surface (esay to scratch or very resistant) with each optical glass recipe made to develop very specific qualities in how the glass and final lens treats light. As a general rule, high quality glass is soft, which is why some lenses has as their front and back element, a non-optical lens element that is there to protect the actual optical glass from scratches. As a side noite, Leica made their own glass laboraty, The Leitz Glass Laboratory, from 1949-1989, which deveopled 35 new glass types and took out more than 2,000 patents of glass recipes from more than 50,000 experimental melts of glass. These designs, or recipes, are still used today by the lens designers to obtain very specific optical results. Other lens manufacturers in the world of course have had their glass laboratories, and today one will find an interchange of glass patents amongst production facilities that service Leica, Nikon,, Fuji and so on with optical lens elements.
Lens hood = (also called a Lens shade or Ventilated Shade). A tube or ring attached to the front of a camera lens to prevent unwanted light from reaching the lens and sensor. In the past where lenses were not coated to prevent internal reflections inside the lens, the lens hood was often essential. These days where lenses are coated, the shade serves just as much as decoration and protection (bumper) as well. ORIGIN Old English hod; related to Dutch hoed, German Hut 'hat,' also to hat.
Lens hood or Lens shade or ventilated shade. In the picture is a ventilated shade with clip-on mount to a 50mm f/2.0 lens. Ventilated means it has openings that allow for view from the viewfinder.
Lens names of Leica distinguish which widest aperture the lens has:
Noctilux
f/0.95 - f/1.25
Nocticron
f/ 1.2 (Leica-designed Panasonic lens)
Summilux
f/ 1.4 - f/1.7
Summicron
f/2.0
Summarit
f/2.4 - 2.5
Hektor
f/1.9 - f/6.3 (used 1930-1960 for screw mount lenses only)
Elmarit
f/2.8
Elmar
f/2.8 - f/4.5
Elmax
f/3.5 (only used 1921-1925 for the 50mm Elmax f/3.5)
Telyt
f/2.8 - f/6.8 (used for tele lenses)
Light = Tiny particles called photons that behaves like both waves and particles. Light makes objects visible by reflecting off of them, and in photography that reflecting off of subjects is what creates textures, shapes, colors and luminance. Light in its natural form (emanating from the sun) also gives life to plants and living things, and makes (most) people happier. So far, nobody has been able to determine exactly what light is. The word photography means “writing with light” (photo = light, -graphy = writing). Read more about light in my book Finding the Magic of Light.
Live View = This is the ability to see the image the sensor see, live, via the screen on the back of the camera, or via an electronic viewfinder (EVF).
LMT - Leica Thread-Mount: Also known as M39, is the screw mounted lenses for Leica cameras. It’s a simple as that; you screw on the lens, and back in 1932, the possibility to change the lens was the big news hwen introduced by Leica on the Leica III. The M39 system was updated with the M Bayonet from 1954 for the Leica M3. The M bayonet is a quick way to change lenses and is the current mount for Leica M digital rangefinders.
M (as in "M3", "M6", "M7" etc.)
A) The M originally stands for "Messsucher", which is German "Meßsucher" for "Rangefinder". The "3" in M3 was chosen because of the three bright line finders for the 50, 90 and 135 mm lenses. Later the numbers of the M cameras were more or less chosen to follow each other.
M-body evolution in chronologic order:
M3 - MP - M2 - M1 - MD - MDA - M4 - M5 - CL - MD-2 - M4-2 - M4-P - M6 - M6 TTL - M7 - MP - M8 - M8.2 - M9 - M9-P - MM (black and white sensor) - ME (Type 220) - Leica M (Type 240) - Leica M-P 240 - Leica M 246 Monochrom - Leica M-A (type 127, film camera) - Leica M 262 - Leica M-D 262 (without a screen) - Leica M10 - Leica M10-P, Leica M10 Monochrom, Leica M10-R.
B) M also refer to M-mount as the M bayonet that couple the Leica M lenses to the Leica M camera. Before the M bayonet the coupling between the camera and lens was screwmount.
C)
M nowadays refer to the Leica M line of cameras rather than the "Messsucher".
The Leica M bayonet on the Leica M10.
M-mount: The Leica M-mount is a bayonet that was introduced with the Leica M3 camera in 1954 and has been used on all subsequent Leica M cameras, as well as on the Epson R-D1, Konica Hexar RF, Minolta CLE, Ricoh GXR, Rollei 35RF, Voigtländer Bessa, and Zeiss Ikon cameras (2019).
Compared to the previous screw mount (M39), the M
mount requires a quick turn of the lens, and ithe lens is mounted. The patent for the M-bayonet ("Bajonettvorrichtung für die lösbare Verbindung zweier Kamerateile") was registered by Ernst Leitz GmbH 10 February 1950 (patent number DE853384). Hugo Wehrenfennig was credited with the invention.
M9
Leica M9 is a model name for the Leica M9 that was introduced on September 9, 2009 (as the first full-frame digital Leica M). It was the latest model designation using the M and a number. From their next model, Leica Camera AG introduced a new model system so each camera would simply be a Leica M but then with a model designation like Typ 240, Typ 246, Typ M-D 262 and so on. The idea was inspired from Apple who name their computers for example MacBook Pro and then it has a sub- model number designation which model it is (and which would define speed of processor, etc).
MACRO = Macro lens. The Leica 60mm APO-Elmarit-Macro-R ASPH f/2.8 is a 60mm lens for portraits, landscapes, etc. as well as a near focus macro lens. The Leica Q lens can be turned to Macro which enables you to go close so as to enlarge smaller subjects. The Leica M cameras becomes Macro when you add a Macro ring "Oufro" or "Leica Macro M Adapter" that increases the lens' distance to the sensor. The word macro comes from Greek makros ‘long, large.’
Mandler, Dr. Walter (1922 - 2005)
Legendary Leica lens designer and CEO of Ernst Leitz Canada (ELCAN) 1952-1985. Read more inLeica History.
Dr. Walter Mandler (center) at the Ernst Leitz Camera factory.
Megapixel (or MP) - Millions of pixels. See pixel further down. How many units of RGB is recorded by a given sensor by taking height x widt. A Leica M10 delivers a 5952 x 3968 pixel file = 23,617,536 piexls. On a screen the resolution you choose determines the size of the image. Say you have a 5000 pixel wide file and your screen is set for 8000 pixels wide. Then the image will fill only the 5000 pixels fo the 8000 and the rest will be empty, If you then change the screen resolution to 5000 wide, the image would be able to fill out the whole screen.
Meßsucher = (rangefinder or distance finder) = Mess = range, sucher = finder. It is always correctly written with the "ß". There are technically not three "s", rather the "ß" and one "s" because it is a word constructed by the combining of two precise words.
MF (Manual Focus) for lenses that are focused by hands, as opposed to Auto Focus.
mm = millimeter(s), as in a 50mm lens. (Earlier in lens history lenses focal length was given in cm = centimeters; as in a 5 cm lens). For anyone used to centimeters and millimeters, it’s no wonder. But if you grew up with inches, feet and yards, you may have had a hard time grasping what a 50mm lens was. But as lenses were designed first in Europe, the metric system with centimeters and millimeters was used to describe lenses.
(Leica and others made lenses for a while with either meter scale or feet scale; but then eventually started including meter and feet on all the lenses (two scales, usually distinguished with different colors). However, the lens' focal length remained always 50mm, 75mm and so on).
The reason a 50mm lens is a 50mm lens is that there is 50mm from the focus plane (the film or sensor surface) to the center of focus inside the lens. When photography was a young subject, it was engineers who made it all, and the users were expected to understand. The engineers were so into the making of the lenses, that it apparently never dawned upon them that today’s users would think of a 21mm lens as a wide angle lens rather than a lens where there is 21mm from the sensor to the center of focus inside the optics.
MP
a) Stands for Mechanical Perfection, as in the Leica M-P.
b) Megapixels (millions of pixels).
c) Megaphotosites (millions of photosites).
ND
Neutral Density filters are grey filters function as 'sunglasses' for lenses. They simply block the light so that a lens can work at for example f/0.95 or f/2.0 in sunshine.
If a camera is set to 200 ISO and the maximum shutter speed is 1/4.000, this will usually result that the lens has to be at f/2.8 or smaller aperture in sunshine. Else the image will over-exposed. So in order til stay within the maximum shutter speed of 1/4.000 and still use a lightstrong lens wide open, one mount a ND-filter that reduce the light with 3 stops (8X) or 6 stops (64x).
For video ND-filters are used quite a lot (as the shutter speed for video is 1/60), and ND-filters are also used to reduce the light for really long multi-exposures at night (stop-motion video and stills).
ND-filters also exist as variable ND-filters so one can adjust the amount of light going through from for example 1 stop (2X) to 6 stops (64X).
ND-filters also exist as graduated ND-filters where the top of the filter is dark and then gradually tone over in no filter (so as to reduce the skylight in a landscape for example).
The ND filters are called Neutral because it is a neutral filter. It doesn't change colors, only the amount of light.
ND-filters / gray-filters.
Noctilux = Also known as "King of the Night" because "Nocti" means Night and "Lux" means Light. The f/1.0 lenes from Leica are named "Noctilux". The first Leica Noctilux lens was the 50mm Noctilux f/1.2 which shortly after it's introduction was improved to the 50mm Noctilux f/1.0. In the current model the f-stop has been improved further to f/0.95.
"Noctilux" refers to the maximum lens aperture - here f1.0 . "Nocti" for nocturnal (occurring or happening at night; ORIGIN late 15th cent.: from late Latin nocturnalis, from Latin nocturnus ‘of the night,’ from nox, noct- ‘night.), "lux" for light. The Leica Noctilux 50mm f1.0 is famous for enabling the photographer to take photos even there is only candleligts to lit the scene. See the article "Leica Noctilux - King of the Night"
The Noctilux "King of the Night" lens. From left the f/0.95 in silver (same on the camera, in black), the f/1.0 in the back and the rare and expensive first model, the f/1.2 in the front.
No.
Number, on this site Leica catalog numbers or order numbers. Some the numbers changed depending on the number of cams in the lens: The Elmarit-R f2.8/135mm started life as No. 11 111, however when fitted with 2 cams for the SL became No. 11 211, yet another No. for the 3 cams lens and a fourth number for 3 cam only at the end of its life. Number changes also applied to M lenses depending on whether they were screw-thread, bayonet or for M3 with “spectacles”. Thus the No. in the Thorsten Overgaard Leica Lens Compendium list is a guideline but not a comlete list of existing catalog numbers.
Optic = Eye or vision. From French optique or medieval Latin opticus, from Greek optikos, from optos ‘seen.’
Oufro (model 16469Y)
An original Leitz Extension Ring (produced 1959-1983 as part no. 16469). Used with Oubio for all the longer (125mm+) Visoflex lenses and without OUBIO for 35/50mm. OUFRO can be stacked for greater magnification and will work on the Leica M Type 240 as macro for all lenses (including the Noctilux, 90mm APO-Summicron and even 21mm lenses).
The OUFTO on Leica M Type 240 with Leica 90mm APO-Summicron-M ASPH f/2.0.
Perspective = The way objects appear to the eye; their relative position and distance. Also, selective focus (foreground and background out of focus) can change the perception of perspective (also see Three-dimensional). A wide angle "widens" the perspective and makes objects further away appear smaller than they are to the eye; and objects closer, relatively larger than they are to the eye. A tele lens will "flatten" the perspective and often objects further away will appear relatively larger than close objects than they are in real life. A 50mm lens is the one closest to the perspective and enlargement ratio of the human eye.
The word Perspective comes from the latin word for optics (perspicere, per- ‘through’ + specere ‘to look’), and so-called Renaissance painting is simply painting done within the framework of optics and the linear perspective it presents.
Perspective is relative position and distance. The objects nearby are larger than objects far away. This is how the eye and the mind calculate distance. The eye and the camera automatically captures perspective. In darwing and painting one would see "stupid" two-dimensional drawings 500 years B.C where elements were thrown into the mix without considering that a an object far away must be smaller than if close to the viewer. The word "perspective" comes from "to look through (optics)". Pier 7 in San Francisco by Thorsten Overgaard. Leica M11 with Leica 50mm Noctilux-M ASPH f/0.95.
Vanishing points are the points where lines meet. This is how you make perspective in paintings and drawings (and some times make movie sets or theatre stages appear more three-dimensional than they are)
Painters works with vanishing points, which is where the lines meet, so as to create an illusion of perspective and three-dimensional effect on a two-dimensional painting or drawing.
The human eye corrects for perspective to an extreme degree. We always see vertical lines vertical and horisontal lines horisontal: The eye has a angle of view equivalent to an 8mm wide angle lens, a size ratio equivalent to a 50mm lens and we focus on relatively small area of the viewing field - one at the time. Three things happens that are worth paying attention to:
1) We compile areas of our view that we focus on, to one conceptual image that "we see". Ansel Adams, the great American landscape photographer pointed out that a large camera used for landscape photography capture every detail in focus and sharp so you can view it in detail after; but the eye does not see everything in focus when you try to compose the landscape photography, the eye scans only one part at a time and stitch the idea together. This makes composing or prevision of a landscape photography challenging.
2) We compile areas of our view that we individually adjust the exposure of. A camera adjust the exposure of the whole image frame to one exposure. That's why what looks like a nice picture to the eye of houses in sunshine with a blue sky above, becomes a photograph of darker buildings with a bright white sky: The camera simply can't take one picture that compare to what we "compiled" with our eyes, adjusting for each type of light.
3) Objects (on a table, for example) in the bottom of our viewing field will appear 100% perspective corrected - to a degree that it is impossible to correct in optics, with or without software correction. A wide angle lens, even with little distortion, will exaggerate the proportions of the closet part so it - to the eye - looks wrong.
Perspective correction - In software like Adobe Lightroom and Capture One Pro there is often a feature to correct perspective (and distortion) like seen below. You can change perspective this way, or at least make believe: If you correct a tall building on teh vertical lines, you will notice that the height of the windows doesn't match the perspective. If the building is with straight lines, the windows should all be of the same size. But a tall building seen from below and corrected with software will have taller windows (closer to camera) in the bottom than in the top (further away from the camera originally).
A graphic illustration of the typical Bayer Color Filter Array on an RGB sensor. It's called a Bayer filter because Bryce Bayer of Eastman Kodak invented the technology of filtering incoming light into RGB and distribute it into the the photosites that each read just one color (R/G/G/B).
Photosite - The unit in a digital camera sensor that records intensity of either red, green or blue. Unlike the output of a sensor, measured in pixels (and where each pixel contains RGB), the photosite records only one color each, and it's intensity (how bright it is). A photosite can not distinguish colors, which is why there is a Color Filter Array (basically a prism) above them to filter the colors and send information to the photosite if 's a R, G og B color. See illustration below. In a monochrome sensor (as in the Leica M Monochrom and the Phase One Achromatic), all photosites are recording intensity of light only as there is no concern which color it is, and there is no color filter.
The ratio of photosites to pixels is not a given. Each block of 4 contiguous photosites contains one photosite sensitive to low wavelengths (blue), one photosite sensitive to high wavelengths (red), and two identical photosites sensitive to medium wavelengths (green). So four photosites would be the minimum to create one 'full-color' pixel. Apart from that, depends on the sensor specifications, which is different from brand to brand. Sometimes four photosites (two Green, one Red and one Blue) makes up one pixel, at other times it's more photosites to one pixel; and there is also pixels sampled from photosites across (sort of overlapping patterns).
Pixel - Made up word from Pix (picture) and el (element). A pixel is the smallest full-color (RGB) element in a digital imaging device. The physical size of a pixel depends on how you've set the resolution for the display screen. The color and tonal intensity of a pixel are variable, meaning that each pixel contains RGB. This is different from a camera sensor's small eyes (photosite) that are an intensity of either red, green or blue. You could say that the digital sensor's photosite (where each unit collects just one color; red, green or blue) is the input technology, whereas the pixels on a screen (where each pixel contains red, green and blue) is the output device. So while sensors are measured in megapixels (mega = million), it's their output unit of pixels, and not the input unit of photosites that is measured and stated. See illustration below.
R = Resolution, in the name Leica M10-R camera model (2020).
Rigid - Refers usually to the Leica 50mm Summicron-M f/2.0 "Rigid" of 1956.
It is called "Rigid" because, unlike the 50mm Collapsible, this one is not able to be changed.
Rigid means stiff, uable to be forced out of shape. Not able to be changed. From Latin rigere, "be stiff".
The name is a little confusion nowadays as all or most lenses are rigid today, but back in 1925-1956, many lenses were collapsible so the camera was compact when not in use. Just like compact cameras today often has a lens that extrudes when the camera is turned on, and collaps into the camera body when the camera is turned off.
RF
(R)ange (F)inder - the mechano-optical mechanism which allows M Leicas to focus.
Alternative meaning - RF is also shorthand for Hexar RF , Konica's motorised "M-lens-compatible" rangefinder camera released in 2000.
S = Single image. When the ring by the shutter release on top of the camera (or in the menu of a digital camera in case it does not have this ring on the ourside) is moved from OFF to S, the camera takes only one photo at the time (Single). The other possibility is Continuous where the camera takes pictures continiously as long as the shutter release button is helt down. (see above).
Saturation: How colorful, intense or pure the color is. Less saturation would be less colorful, more saturation would be more colorful. In today’s photography, de-saturating a photo on the computer will gradually make it less and less colorful; and full de-saturation would make it into a black and white photo.
Sensor = A device that detects a physical property (like light) and records it. A camera sensor is a plane plate with thousands of small “eyes” with (photosites) a lens in front of each (CFA, Color Filter Array), which each individually records the amount of red, green and blue light rays that comes through the lens. Together, Red, Green and Blue form all colors of the spectrum, which becomes a pixel. Sensor comes from Latin sens- ‘perceived’.
Sharpness - See “Focus”
Shutter speed dial - The dial on top of the Leica M where you can set the shutter speed manually. It can also be set to A which stands for Aperture Priority (where the camera suggests a shutter speed; or when you move the dial away from A, the camera will show arrows in the viewfinder, suggesting which direction to change the Aperture to, to get the correct exposure).
Six-bit code (6-bit code) - An engraving on the flange of M-lenses that makes it possible for digital M-cameras to recognize the lens that has been mounted. The camera can include information on the attached lens and its focal length in EXIF data and make digital corrections for lens-specific flaws, such as color-cast or vignetting. Six-bit coding was introduced for all M-lenses sold since 2006, but many older lenses can be retrofitted with the code at Leica Camera AG in Wetzlar.
SL = Abbreviation for Single-Lens as in the Leica SL that is a camera without reflex (mirror).
SLR = Abbreviation for Single-Lens Reflex; the lens that forms the image on the film/sensor also provides the image in the viewfinder via a mirror. Newer camera models has aen EVF (Electronic Viewfinder) that displays in the viewfinder what the sensor sees in real-time.
Leitz Wetzlar Mikro-Summar 42mm f/4.5 lens anno 1910 might be the first lens carrying the name Summar.
Summar - (or a story of name development) The 1933 lens 50mm f2.0 Summar: It started out as Summar(f2.0), then the Summitar (f2.0 in 1939), then the Summarex(f1.5 in 1948), then the Summaron(35mm f.2.8 in 1948, then later f2.0, f3.5 and f5.6 lenses), then the Summarit (f1.5 in 1949 and used again for the 40mm f2.4 on the Leica Minilux in 1995, then again for the 35mm, 50mm, 75mm and 90mm Summarit f2.5 in 2007) then the Summicron(f2.0 in 1953 for the collabsible 50mm) and finally the Summilux(50mm f1.4 in 1959).
ORIGIN of Summar is unknown.
Summarex
The great thing about being a lens designer is that you get to name the lens. Dr. Max Berek who worked for Leitz from 1912 till his death in 1949 named lenses after his two favorite dogs. One was Sumamrex named after his dog Rex, the other Hektor named after his dog Hektor.
Summarit
Refers to the maximum lens aperture - here f/1.5.
Summicron = Refers to the maximum lens aperture - here f/2.0 . There are many guesses how this name came about, a popular one being that the "summi" came from "summit" (summit means the highest point of a hill or mountain; the highest attainable level of achievement) while the "cron" came from "chroma" (ie. for colour). Not so: The name (Summi)cron was used because the lens used Crown glass for the first time, which Leitz bought from Chance Brothers in England. The first batch of lenses were named Summikron (Crown = Krone in Deutsch). The Summi(cron) is a development from the orignal Summar (the 50mm f2.0 lens anno 1933). Vario-Summicron, Vario-Elmarit is Leica Camera AG's name for zoom lenses, for example the Vario-Summicron f/2.0 as the one that is on the Leica Digilux 2.
Summilux = Refers to the maximum lens aperture - here f/1.4 , "-lux" added for "light" (ie. the enhanced light gathering abilities). In Leica terminology a Summilux is always a f/1.4 lens and a Summicron is a f/2.0 lens.
Telyt
Lens nomenclature - short-hand for " telephoto " (tele- is a combining form, meaning to or at a distance) and used in names of instruments for operating over long distances : telemeter. The name has been used for a number of tele lenses from Leica.
ORIGIN: from Greek t?le- ‘far off.’
Three-dimensional = Having the three dimensions of height, width and depth. In photography and lens design, three-dimensional effect is also the perception of even small micro-details; the texture of skin can appear flat and dead or three-dimensional and alive. Also, selective focus (foreground and background out of focus) can change the perception of depth. Also see Perspective.
Leica T is the compact camera developed by Leica Camera in 2014 as a touch-screen operated camera that can take the Leica L mount lenses made for this camera and the Leica SL and Leica CL. This camera series was names Leica TL later. See my article Compact Leica Cameras for more.
TTL
(T)hrough (T)he (L)ens light metering, usually WRT the flash metering capabilities built into the R6.2, R8, R9, M7 & M6TTL cameras.
V-Lux is a series of compact SLR-like digital cameras by Leica Camera AG developed with Panasonic since 2006, starting with the Leica V-Lux 1 (2006), V-Lux 2 (2010), V-Lux 3 (2011), V-Lux 4 (2012), V-Lux Typ 114 (2014), V-Lux 5 (2018). See my article "Compact Digital Leica Cameras".
To add confusion, Leica also made a Leica V-Lux 20 in 2010, V-Lux 30 in 2011 and a Leica V-Lux 40 in 2012 that was a temporarily renaming of the Leica C-Lux series.
Vario- is the Leica Camera AG name for zoom lenses. Vario-Elmarit, Vario-Elmar and Vario-Summicron and so on.
Ventilated shade on a 35mm of Elliott Erwitt's Leica MP camera.
Ventilated Shade - A shade is a hood in front of a lens that provides shade from light going straight onto the lens from outside what you are photographing, which could cause internal reflections like flare, which would make the picture less contrasty.
The ventilated shade has holes so it doesn't obstructs the view from the viewfinder. In many of today’s mirrorless cameras where there is no viewfinder looking ver the lens, so there is no actual need for a ventilated shade; but they are considered classic or vintage looking and are still in high demand. It makes no difference for the purpose of the shade (to create shadow) if it is ventilated or not.
Ventilated Shade for the Leica Q. I make ventilated shades for most lenses and sell them from here.
Viewfinder a device on a camera showing the field of view of the lens. Also known as the German word "Messucher" (or Meßsucher).
1) A built-in viewfinder in a camera that simply show the frame you get when you look through the viewfinder.
2) A rangefinder viewfinder which is also used to focus the lens. In Leica M cameras two pictures has to meet and lay 'on top of each other' for the picture to be in focus.
3) An external viewfinder, usually on top of the camera in the flash shoe, so as to show the field of view of lenses vider than what the built-in viewfinder can show (15mm, 21mm, 24mm, 28mm etc viewfinders exist)
4) Very simple "aiming-devices" on top of a camera that is simply a metal frame without any optics. Just a frame, as for example very old cameras (the original Leica), or when using cameras in diving where you can't look through the camera.
5) A Electronic Viewfinder (EVF) that shows what the sensor sees "live".
WLAN = German short for WiFi. In camera menus, Leica may refer to WLAN, which is simply German for WiFi, (and for some reason they refuse to believe that the rest of the world doesn't call it for WLAN like they do). WLAN stands for wirelesslocal area network.
X1 - The Leica X1 was released in September 2009, the Leica X2 in 2012, and Leica X Typ 113 was released in September 2014, all with a fixed 23mm f/1.7 lens. Leica X Vario Typ 107 and Leica X-E Typ 102 was released later. A Leica X-U underwater edition was released in 2026. See my article Compact Leica Cameras for more.
XML = Stands for extensible markup language, which is a way enclose information to a document about how to format it, and more.
XMP = Stands for extensible markup platform (also known as XMP sidecar) and is a standard developed by Adobe and standardized by the International Organization for Standardization ISO. XMP is a 'sidecar' to an image that contains the EXIF data (camera settings) as well as other data about the image recording and editing that would norally be in proprietary formats (only readable by certain software). XMP in short is a container enclosed with the image as a 'sidecar' that contains all available information (EXIF data about settings, IPTC data (who took the photo, copyright info, image captions, etc), but most noteable, the XMP allow you to include information about the editing that was performed to the raw or DNG file, so that when you open the image file in another editing software, the raw data, as well as information about the crop, exposure compensation and other editing you did to the photo, is included). In Adobe Lightroom Classic, one should make sure to select that editing information is written to the XMP file of each image (go to Lightroom > Catalog Settings > Metadata and then click "Automatically write changes into XMP").
Zone System -A system of 11 greytones. Ansel Adams worked out the Zone System in the 1940's with Fred Archer. It may look as simply a grey scale (and it is) but it's the use that has troubled many. If you use a normal external light meter, it will give you the exact amount of light and you can expose your photograph based on that and it will be correct.
What Ansel Adams basically did was that he studied (by measuring with a spot meter), what the exact grey tones were of the sky, the clouds, the sand, the water, the skin and so on at different times of the day.
You could say that he built up a conceptual understanding of how different materials of different colors and reflective surface would look in black and white at different times of day (or different light conditions). He also realized that a tone changes for the human eye depending on it's size and in which context of other tones it is seen.
In short, you could say that the Zone System is know how something would look in black and white when looking at a scenery. Some who have struggled with the Zone System have done so because they think it is a rule. It is not.
How Ansel Adams made New Mexico look:
How most people see New Mexico:
The artistic use of the Zone System.
Ansel Adams developed the Zone System to understand light for himself, but also as a fundament for teaching the light, exposure and making the final photograph. How will it look if you do the usual, and what will it look like if you manipulate it. But most interstingly; how do you work with light, cameras and photographic materials to achieve the look you envision.
The Zone System is meant as a basis on which to create your own aesthetic style and communication. Photography is painting with light. The greyscale is our palette. Ideally we should have a conceptual understanding of the tones and be able to use them intuitive. That was his vision for us all.
Ø - Diameter. As in Ø49 for example which means that the filter diameter is 49mm for this lens (or if a filter is Ø49, it is 49mm in diameter and fits that Ø49 lens). Leica uses E to express their filters sizes, as in E49 for a 49mm filter size.
– Thorsten Overgaard
Index of Thorsten Overgaard's user review pages on Leica M9, Leica M9-P, Leica M-E, Leica M9 Monochrom, Leica M10, Leica M10-P, Leica M10-D, Leica M10-R, Leica M10 Monohcrom, Leica M11, Leica M 240, Leica M-D 262, Leica M Monochrom 246, Leica SL, Leica SL2, Leica SL2-S, as well as Leica TL2, Leica CL, Leica Q, Leica Q2 and Leica Q2 Monochrom:
Leica Digital Camera Reviews by Thorsten Overgaard
Thorsten von Overgaard is a Danish-American multiple award-winning photographer, known for his writings about photography and Leica cameras. He travels to more than 25 countries a year, photographing and teaching workshops to photographers. Some photos are available as signed editions via galleries or online. For specific photography needs, contact Thorsten Overgaard via email.
You can follow Thorsten Overgaard at his television channel magicoflight.tv.